SSI stage 4 submission

What is RadianceTeam SSI 4 concept 2
Our project scope 3
Interaction diagram of SSI Trust Triangle concept (Issuer, Holder, Verifier) 4
The Issuer Verifiable Credentials 5
The Holder Verifiable Credentials 6
The Verifier ensures 7
Mobile App SSI 9
How to use Mobile App SSI 10
Smart-contracts 11
SDK Specification 1"
SDK Documentation 11
Technical Overview 1
Our stack 12
Contacts 13

What is RadianceTeam SSI 4 concept

By Stage 2 and Stage 3 of Everscale SSI Framework our team created the fundamentals for
the SSI infrastructure (DID component and SDK).

Also our DID-Everscale method was approved and published by W3C as a reference
implementation:
https://w3c.qgithub.io/did-spec-reqgistries/#did-methods

approved and added in Universal Resolver driver:
https://qgithub.com/decentralized-identity/universal-resolver#drivers

Our team for the #48 Everscale Self-Sovereign |dentity Framework (Stage 4) contest
developed core instruments for Verifiable Credentials (VC) issuance, storage, and
verification with justified usage of the Everscale blockchain infrastructure. Also our
submission included smart-contracts deployed in Everscale Mainnet, prepared tools for
developers and web interfaces with demo applications (Issuer and Holder Interface and
Verifier Interface).

We created the VC module which consists of triangle SSI Concept (Issuer, Holder, Verifier).
This system allows verifiers not only to authorize its’ users but also create the system of
attribute verification.

SSI Mobile Application makes it easy and affordable for users to log in through SSI. Users
can pass authorization just like they use Google Auth — by scanning the QR code using a
mobile device, the user has the opportunity to log in to the site of any organization (such as
finance, education, gaming, art industry, and many others). Also Mobile Application supports
the SSI system of attribute verification controlled by the end-user.

https://w3c.github.io/did-spec-registries/#did-methods
https://github.com/decentralized-identity/universal-resolver#drivers
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2F3coioq3o7all14umcyk-Everscale%20Self-Sovereign%20Identity%20Framework%20(Stage%204).pdf?alt=media&token=13608eb1-3a38-4015-bea9-97057ceae049

Our project scope

Our primary objective was to build up basic Verifiable Credentials (VCs) infrastructure atop
the Everscale blockchain and enable the external developers to deploy primitive SSI
systems using ready-made components.

What we have done:

SDK with detailed documentation (code)

Everscale Smart-contracts (code)

Frontend + Backend Issuer (codeBackend, codeFront, webApp)
Frontend Holder (codeFront, webApp)

Frontend + Backend Verifier (codeBackend)

Mobile App (code, demo application)

All source codes for above components are licensed under Apache 2.0.

https://git.defispace.com/ssi-4/everscale-vc-sdk
https://git.defispace.com/ssi-4/everscale-vc-contracts
https://git.defispace.com/ssi-4/everscale-vc-backend-verifier
https://git.defispace.com/ssi-4/issuer-frontend
https://ssi4-issuer.vercel.app/#/
https://git.defispace.com/ssi-4/holder-vc-frontend
https://ssi4-manager.vercel.app/#/
https://git.defispace.com/ssi-4/everscale-vc-backend-verifier
https://git.defispace.com/ssi-4/everscal-ssi-mobile-app
https://www.youtube.com/watch?v=-qQWggS-O_8

Interaction diagram of SSI Trust Triangle
concept (Issuer, Holder, Verifier)

User (has own DID identifiar) hold V., VP .

: Local or remote
storage

send real documents S |

access 1o content

- VC management
- create W sand VP

; ; R e IR , :
Issuer VC i ! VC Management | i Verifier (Cinema)

i {has own DID identifier) i i : i

R | o

: | - login with did : - login with did

(R M : | - show list of VC ids with status i - verify user VP proofs

{ - check user real documents : - show list of VE from blockehain | - verify issuer VC proofs

» croaln slalua for VG (Blockehain) ! - revoke VG (blockchain) i - check VC status

| Issus VC for user did : | remowe VC from blockehain ! - verify VC data (access to content)
bl i | load VC to blockchain]

i ~lowd VG o boichan optonad | | croat VP from VG i

= gat status |ist

- gat user VC's

- load V€

- remove VG

- revoke VC status

- check user did
- check issuer did
- chack VC siatus

= check user did

- create VC status
= lgad VT (optional)
- revoke VT status

Everscale

- WG slatus storage
= VG slorage

]
i
i
| - did storage
i
i
i

The Issuer Verifiable Credentials

The Issuer - issuing site that checks the user's documents and issues Verifiable Credentials
based on them.

The user has own DID and is authenticated on the issuer's website using DID.
The issuer has its own DID that points to the VC that the Verifier site can find out who
issued the VC.

e The issuer specifies the user's DID in the VC that the Verifier can check to whom the
VCs were issued.

e The issuer creates a status for the VC in the smart contract, the address of the
contract is entered into the VC so that the Verifier can check the status of the VC.

e The issuer or user can deactivate the VC status.

Web Interface

© womerrn = O womeeran
SSI Demo Issuer N
© reommcersan
© momrceren
L a
-] [
[-] [-]
© o © rowicsrem
U
==
© seomceroan
© momiceronn Your VC
VC Management

Web Interface

https://ssi4-issuer.vercel.app/#/

Description and documentation of the code

Backend

Frontend

The repository contains instructions for launching the web interface locally.

The Holder Verifiable Credentials

Holder is a site for viewing and managing VCs.

e The user can get a list of VCs previously issued to him with DID in the form of VC
statuses

The user can deactivate the status of any VC issued to him.

The user can upload the previously received VC to the blockchain.

The user can find a list of previously loaded VCs.

The user can delete previously loaded VCs.

The user can create a Verifiable Presentation based on a Verifiable Credential using
did.

e V/Ps are required for verification on the Verifier site.

Web Interface

https://ssi4-manager.vercel.app/#/

Description of realization and documentation of the code is here

The repository contains instructions for launching the web interface locally.

https://ssi4-issuer.vercel.app/#/
https://git.defispace.com/ssi-4/everscale-vc-backend-verifier
https://git.defispace.com/ssi-4/issuer-frontend
https://ssi4-manager.vercel.app/#/
https://git.defispace.com/ssi-4/holder-vc-frontend

The Verifier ensures

This site is a demo application with SSI authentication for online cinema. This will make it
possible to show 6+, 12+, 18+, etc. rated movies only to respective audiences. On this
platform users can register and log in as a user using an Everscale wallet by SSI technology.
Also we implemented user authorization in the showcase using a QR code. By scanning the
QR code using a mobile device, the user has the opportunity to log in to the site.

e Site Verifier - receives from the user VP, which stores the assertions from the Issuer
necessary for verification.

Checks the user's DID with authentication.

Accepts the user's VP and checks the integrity of the VP.

Checks the integrity of the VCs that are found inside the VP.

Checks the issuer's DID to see if it can be trusted.

Checks the status of the VC by referring to the contract.

Validates the data issued by the issuer (in this case, age) to allow access to the site.

Web Interface

mmmmmmmmmmmmmmmmm

Congratulations!

Are you over 18 year old?

aroneVPFie

Description and documentation of the code

https://qgit.defispace.com/ssi-4/everscale-vc-backend-verifier

The repositories have instructions for running the demo locally.

https://git.defispace.com/ssi-4/everscale-vc-backend-verifier

Mobile App SSI

Screen-shots

Identification Doc

Seed Phrase

D CopybiD

Welcome to DefiSpace!

cf8e1bB442B4ealea!

‘D Copy Seed Phrase

Signin

Restore Your Account

History Log in with QR Code

Enter your secret phrase

Insert phrase

blush

Ton-Trade
Investing.com
MyFin

Ton-Trade

Cancel (& Sseed phrase valid
G-Corp :

: Encryption password to

The code and description - https://qit.defispace.com/ssi-4/everscal-ssi-mobile-app

https://git.defispace.com/ssi-4/everscal-ssi-mobile-app

How to use Mobile App SSI

Demo Interface

https://www.youtube.com/watch?v=-gQWaggS-O 8

Description

Step 1 User access a website that supports SSI

Step 2 For authorization on the site, the user is shown a QR code
Step 3 The user scans the QR code using their mobile application
Step 4 After that, the user becomes authorized on the site

Additional management of VC (Verifiable Credentials) is implemented on the SSI Manager
Site (Holder Verifiable Credentials).

https://www.youtube.com/watch?v=-qQWggS-O_8

Smart-contracts

Instruments for deployment is_here

SDK Specification

The SDK specification is here

SDK Documentation

The SDK documentation is here

Technical Overview

General architecture

rJ:

Did Document

= deploy Did Document Di rag
- find Did Document SiSlcrses

- code of Did Document

- Did Document
= status of Did Document

Did Document

- edit Did Document
- check did document

- deploy VC container -
- remove VC container VC container L

- code of Index VC
- address holder
- encoded VC

I_|:

- find Index VC
- Index Status VC Resolver VC

- code of Index VC
- code of Index Status VC

Index VC -

- get address VC container

- address VC container
- address halder

I_|:

- deactivate status VC

- deploy Status VC Root
- deploy Status VC
- find Status VC

Status VC Root Status VC]
- code of Status VC "] -slalus VC
- code of Index Status VC - address holder

- address issuer

e

- get address status VC

Index Status VC

- address issuer

e

- address Staius VC
- address holder

https://git.defispace.com/ssi-4/everscale-vc-contracts
https://git.defispace.com/ssi-4/everscale-vc-sdk/-/tree/main/docs/specification
https://git.defispace.com/ssi-4/everscale-vc-contracts

Our stack

Backend

e Node.js + TypeScript

e Nestds

e PostgreSQL (for demo showcase only)
e TypeORM

Frontend

HTML+CSS+JavaScript(JS)
React as JS framework
Tonclient as JS framework
EverWallet Extension

Smart contract

e Solidity language for smart contracts

Sdk

e Node.js

e Tonclient as JS framework
e crypto-js

e jsonld

e noble-ed25519

Mobile App
Front-end:

e React Native,
e React, JS,
e TonClient as JS Framework

Back-end:

e Node.js,
e TypeScript,
e NestJS

Contacts

Wallet:
0:835ebc5dc3b3370b77f15ecf4e62add730f67ef5605c9b2c976e38c0ec6ece3d6
Project credits:

Snezhana Kolesnik, Roman Omelusik, Pavel Soldatov, Evgeniy Harlamov, Anton
Zadorozhniy, Dmitry Samorodkin.

Contacts:

e CHexaHa KonecHuk (https://t.me/skaisy)

e PomaH Omentocuk (hitps://t.me/amel007)

e [Imutpun CamopogkuH (https://t.me/dnugget)

https://t.me/skaisy
https://t.me/amel007
https://t.me/amel007

